How to extract roms' Graphics from Visual Basic

Written by: The_Fake_God

Last update: May 2002

Contents

#Introduction#

#The Basics#

#Writing the Program#

#Credits#

#Introduction#

Yes, I´m The_Fake_God yet with another tutorial (boredom to unknown limits). Well, lately I´ve been diggin through my memories and something popped off my head (hopefully it wasn´t my brain). I remembered the time I mailed SnowBro beggin him to teach me how to read graphics form roms :p Now I know why he didn´t reply lol... I got a few mails asking the same so I decided to make this doc. If you find this doc interesting or useful, let me know. I´d love to update it.

#The Basics#

I suggest you to read Klarth's Consolegfx.txt doc first (romhacking.org). Here are 2 basic concepts that you MUST know before going on:

BPP: Bits Per Pixel

Bitplane: "layer" where you´re going to paint pixels, in certain order, depends on the format.

For example:

1BPP = 1 bit per pixel.

With one bit you can only represent 2 colors 0 or 1.

so an 8x8 1BPP tile would be somehting like this

00000000

01111110

01000110

01001010

01010010

01100010

01111110

00000000

See? One bitplane, 2 colors. Read Klarth's doc for more details.

#Writing the Program#

There are some basic steps you must follow in order to read/display graphics:

1) Read the byte

2) Convert the byte to binary

3) Mix the Planes to get the colors (if it´s more than 1BPP)

4) Paint

Now more detailed:

//1BPP Format//

This is the monochrome format, the easiest to implement one. In the included example, there's a file named example.gfx, that is a 2BPP "A" letter (from Lolo, in case you´re wondering).

Fisrt Step: Read the byte

Since it´s too complicated to read individual bytes each time you´re going to plaint a pixel, I used a static array of bytes.

//CODE//

' An array of 16 bytes

Global Tile(0 To 15) As Byte

//CODE//

Ok, those are 16 bytes. Why? Cauz it´s the size of a 8x8 2BPP tile, you can change the array's limits depending on the format your dealing with.

//CODE//

Public Sub GetTile()

 Open App.Path & "\example.gfx" For Binary As #1

 Get #1, , Tile()

 Close #1

End Sub

//CODE//

That's quite simple. Open the file, get the data and close. Now the information is redady to use.

//CODE//

' Monochrome Pallette

Public Type MPallette_

 Color1 As Long

 Color2 As Long

End Type

Global MPallette As MPallette_

Public Type Pallette2BPP_

 Color1 As Long

 Color2 As Long

 Color3 As Long

 Color4 As Long

End Type

Global Pallette2BPP As Pallette2BPP_

//CODE//

Since you need to add color to the graphics (could be the pallete of the rom you´re hacking) I made those simple structures to hold the colors.

1BPP Mode: 2 Colors

 0 = Color 1

 1 = Color 2

2BPP Mode: 4 Colors

 00 = Color 1

 10 = Color 2

 01 = Color 3

 11 = Color 4

Why did I put those 1's and 0's together? Well, I´ll get into that in the next piece of code.

//CODE//

Public Sub PaintTile(Buffer As PictureBox, mode As Byte)

 ' Local Variables

 Dim curBit As String * 1

 Dim curBit2 As String * 1

 ' Position Index

 Dim x As Integer, y As Integer

 Select Case mode

 ' MONOCHROME

 Case 0:

 For y = 0 To 7

 For x = 0 To 7

 curBit = Mid(Bin(Tile(y)), x + 1, 1)

 Select Case curBit

 Case "0": Buffer.Line (x * 16, y * 16)-Step(16, 16), MPallette.Color1, BF

 Case "1": Buffer.Line (x * 16, y * 16)-Step(16, 16), MPallette.Color2, BF

 End Select

 Next x

 Next y

 ' 2BPP

 Case 1:

 For y = 0 To 7

 For x = 0 To 7

 curBit = Mid(Bin(Tile(y)), x + 1, 1)

 curBit2 = Mid(Bin(Tile(y + 8)), x + 1, 1)

 Select Case (curBit + curBit2)

 Case "00": Buffer.Line (x * 16, y * 16)-Step(16, 16), Pallette2BPP.Color1, BF

 Case "10": Buffer.Line (x * 16, y * 16)-Step(16, 16), Pallette2BPP.Color2, BF

 Case "01": Buffer.Line (x * 16, y * 16)-Step(16, 16), Pallette2BPP.Color3, BF

 Case "11": Buffer.Line (x * 16, y * 16)-Step(16, 16), Pallette2BPP.Color4, BF

 End Select

 Next x

 Next y

 End Select

End Sub

//CODE//

First of all, I make an 8x8 loop (8 in y, 8 in X). Check this diagram out:

1BPP

BYTE#1: 00000000

BYTE#2: 01111110

BYTE#3: 01000110

BYTE#4: 01001010

BYTE#5: 01010010

BYTE#6: 01100010

BYTE#7: 01111110

BYTE#8: 00000000

Read one byte, convert to binary, paint. I used "Line" to create boxes instead of little pixels, like scaling the image.

2BPP

00000000

011111111

011222211

011222211

011222211

011222211

011222211

011222211

 11111111

BYTE#1: 00000000 BYTE#9: 11111111

BYTE#2: 01111110 BYTE#10: 11222211

BYTE#3: 01000110 BYTE#11: 11222211

BYTE#4: 01001010 BYTE#12: 11222211

BYTE#5: 01010010 BYTE#13: 11222211

BYTE#6: 01100010 BYTE#14: 11222211

BYTE#7: 01111110 BYTE#15: 11222211

BYTE#8: 00000000 BYTE#16: 11111111

Plane 1 - Byte 1 to 8

Plane 2 - Byte 9 to 16

The combination of bits #1 of Bytes 1 and 9 would make the first pixel, and so on.

#Credits#

Written by: The_Fake_God (The_Fake_God@hotmail.com) If you want to post this doc on your site, please mail me (just to know, I won´t say no :P). Thanks to Gil-Galad, UgeTab, Mogster and Metallica.

